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Abstract

Coalbed methane (CBM) wells tend to produce large volumes of water, especially when there is 

hydraulic connectivity between coalbed and nearby formations. Cross-formational flow between 

producing coal and adjacent formations can have significant production and environmental 

implications, affecting economic viability of production from these shallow reservoirs. Such flows 

can also affect how much gas can be removed from a coalbed prior to mining and thus can have 

implications for methane control in mining as well. The aim of this paper is to investigate the 

impact of water flow from an external source into coalbed on production performance and also on 

reservoir variables including cleat porosity and relative permeability curves derived from 

production data analysis. A reservoir model is constructed to investigate the production 

performance of a CBM well when cross-formational flow is present between the coalbed and the 

overlying formation. Results show that cleat porosity calculated by analysis of production data can 

be more than one order of magnitude higher than actual cleat porosity. Due to hydraulic 

connectivity, water saturation within coalbed does not considerably change for a period of time, 

and hence, the peak of gas production is delayed. Upon depletion of the overlying formation, 

water saturation in coalbed quickly decreases. Rapid decline of water saturation in the coalbed 

corresponds to a sharp increase in gas production. As an important consequence, when cross-flow 

is present, gas and water relative permeability curves, derived from simulated production data, 

have distinctive features compared to the initial relative permeability curves. In the case of cross-

flow, signatures of relative permeability curves are concave downward and low gas permeability 

for a range of water saturation, followed by rapid increase afterward for water and gas, 

respectively. The results and analyses presented in this work can help to assess the impact of cross-

formational flow on reservoir variables derived from production data analysis and can also 

contribute to identifying hydraulic connectivity between coalbed and adjacent formations.
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Introduction

Coalbed degasification is an important practice for minable coalbeds for its effectiveness in 

improving the safety of underground coal mines and also for the potential of utilizing 

produced methane as an unconventional energy resource, as well as for reducing greenhouse 

gas emissions (Karacan et al. 2011; Moore 2012). Coalbed gas drainage activities that were 

initially undertaken, at least in the USA, for primarily improving mining safety, have 

improved especially after the development of predictive methods and new drilling and 

production technologies. This is especially true for the development of coalbed gas reservoir 

models that are validated using history matching of production wells, which help researchers 

to gain confidence in the values of assigned coal properties and their distribution within the 

reservoir. However, coalbeds and their depositional environments are generally more 

complicated compared to conventional oil or gas reservoirs, and thus production of fluid 

may not necessarily be confined to the coalbed itself—i.e., there may be cross-flow between 

coalbed and the overlying formations for different reasons, such as faults, unconformities, 

and hydraulically induced fractures. Such cross-flows, if not noticed, can result in loss of 

degasification efficiency, as water will be produced for extended periods of time and also 

will affect the reservoir variables estimated by history matching methods.

Groundwater hydrology plays an important role in production performance and economics 

of coalbed methane reservoirs (Pashin 1991; Kaiser 1993; Ayers and Kaiser 1994; Scott 

2002). Water production from coalbeds has environmental and economic implications for 

CBM development projects, depending on the volume of water produced and cost of water 

treatment and disposal. The average water production rate for CBM wells in eastern 

Australia is about 188 STB per day, and it can vary from only a few barrels per day per well 

up to thousands of barrels per day per well across a reservoir (CISERA 2014). Salmachi et 

al. (2013, 2014) have discussed the impact of water production and cost of treatment and 

disposal for well placement in developed coalbed methane reservoirs.

Groundwater hydrology in a coalbed methane reservoir is controlled by the geology of the 

area. Confinement by impermeable formations, faults, presence of outcrops, and 

unconformity are some of the geological factors that may affect coal hydrology. 

Hydrodynamics of coalbed methane reservoirs of Black Warrior Basin (western Alabama, 

USA), San Juan Basin (encompassing parts of New Mexico, Colorado, Arizona, and Utah, 

USA), Uinta and Piceance Basins (Utah, USA), and Colorado River Basin (USA) have been 

investigated in the context of the geological setting (Anna 2003; Pashin 2007; Council 

2010). Thick impermeable marine shales in the Black Warrior Basin limit cross-

communication of fluids and restrict the flow into coal zones (Pashin 2007). Faults, 

regardless of their types, can affect fluid flow within coal zones (Moore 2012). The effect of 

faults on gas and water production has been investigated in Deerlick Creek, Cedar Cove, and 

Oak Grove fields in the Black Warrior Basin (western Alabama, USA), and also the Roma 

gas field in the Surat Basin in Australia (Sparks et al. 1993; Pashin 1998; Santos-GLNG 

2014). Impermeable faults can result in reservoir compartmentalization and reduce 

degasifying efficiency, especially in vertical wells (Karacan et al. 2008). On the other hand, 

permeable faults that lie within a production area may provide viable avenues for hydraulic 

communication with nearby formations.
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Permeability is also an important controlling factor in hydrology of coalbeds. Holditch 

(1993) suggested that coal permeability in the range of 1–100 mD is optimum to achieve 

economical gas flowrate. Ultra-high permeable coals might be difficult to dewater, 

especially when cross-formational flow exists. The other geological factor that may establish 

hydraulic connectivity between nearby formations and the coalbed is the unconformity. 

Unconformity can remove formations that are effective seals for a reservoir and create a 

contact zone between the coal and an overlying aquifer. The Precipice contact zone in the 

Fairview Field has been studied to investigate the hydraulic connectivity between the 

Bandanna Formation (target formation in the Fairview field) and the Precipice sandstone. At 

the Precipice contact zone, the Rewan Formation generally isolating the Bandanna 

Formation is absent (Santos-GLNG 2014).

Figure 1 is a conceptual model illustrating potential cross-flow scenarios established 

artificially by wellbore stimulation or present naturally due to geological setting of the area. 

Propagation of complex hydraulic fractures into nearby formations increases the chance of 

cross-flow. It was found that hydraulically stimulated fractures in coalbeds of the Powder 

River Basin could potentially extend into neighboring formations and result in excessive 

water production and inefficient reservoir depletion (Colmenares and Zoback 2007). The 

occurrence of cross-formational flow in a contact zone is also conceptually illustrated in Fig. 

1. High permeable coal in a contact zone is an ideal avenue to discharge water from nearby 

formations.

In the case of cross-formational flow, reservoir parameters obtained by production data 

analysis techniques can be affected. Production data analysis is a powerful tool assisting 

researchers in attaining some significant reservoir properties as well as stimulation 

parameters. Recent advances in production data and rate transient analyses help researchers 

to obtain vital CBM reservoir properties such as permeability-thickness product (Kh), skin 

factor, initial gas and water in place, and time of peak gas production (Mohaghegh and 

Ertekin 1991; Aminian et al. 2004; Clarkson et al. 2012; Clarkson 2013; Karacan 2013; 

Salmachi and Yarmohammadtooski 2015). Production data analysis in CBM reservoirs can 

be complicated due to factors such as adsorption-driven gas storage mechanism, difficulties 

in determining relative permeability, and stress/desorption-dependent permeability (Clarkson 

et al. 2007a).

One of complexities affecting PDA is relative permeability. Characteristics of relative 

permeability curves determine fluid production (Chen et al. 2013) and are essential for field 

and simulation studies (Shi et al. 2008; Clarkson et al. 2011). Relative permeability curves 

are generally shown as a function of wetting phase saturation. Relative permeability of coals 

has been measured in the laboratory by various authors (Dabbous et al. 1974; Reznik et al. 

1974; Gash 1991; Purl et al. 1991; Hyman et al. 1992; Meaney and Paterson 1996; Shi et al. 

2008; Shen et al. 2011). For CBM wells drilled in water-saturated coals, gas and water 

relative permeability curves can be derived from field data as the depletion progresses. The 

more the coal is dewatered, the larger the water saturation range is available to derive 

relative permeability curves (Seidle 2011). Clarkson et al. (2011) introduced a workflow to 

generate relative permeability curves from actual production data. However, relative 

permeability curves obtained by production history matching are generally different from 
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laboratory measured curves due to viscous fingering and buoyancy effects, which are 

incorporated into history matched derived curves but not in the ones measured in the 

laboratory (Seidle 2011).

This study aims to investigate cross-formational flow between producing coalbed and 

adjacent formations in a contact zone by reservoir simulation. For this purpose, a simulation 

model is constructed and cross-flow is allowed between the coalbed and the overlying 

formation. The generated production data are interpreted to demonstrate the effect of cross-

flow on production performance of the well. Cleat porosity and relative permeability curves 

are derived from simulated production data to indicate the difference between derived and 

actual reservoir variables and to highlight the impact of cross-formational flow on 

production data analysis.

Methodology

In the present work, a simulation study is performed to generate gas and water production 

data while cross-formational flow is present between the coalbed and the overlying 

formation. Cleat porosity is calculated by water production data, and a tank-type model is 

used to derive relative permeability curves from simulated 2-phase flow production data. It 

should be noted that we intentionally violate the assumption of no-flow boundary by 

applying the tank-type model. This is equivalent to using the tank-type model to extract 

reservoir engineering parameters while cross-formational flow is not detected. This study 

demonstrates how reservoir parameters obtained by production data analysis may be affected 

by cross-flow. The workflow in Fig. 2 shows the steps and methods used to derive cleat 

porosity and relative permeability curves from simulated production history.

Simulation model

A single-well simulation model is constructed using the Computer Modelling Group (CMG) 

reservoir simulator. We try to keep the simulation model as simple as possible to exclusively 

study the cross-formational flow effect. Although this model does not replicate a particular 

well, most of the input variables have been selected based on the USA and the Australian 

CBM reservoir properties. Table 1 shows the input variables used in the simulation model.

The following models and assumptions are used in the model to simulate gas and water flow 

in the coalbed:

1. Dual porosity.

2. Non-equilibrium sorption.

3. Palmer–Mansoori rock type compaction.

4. Langmuir-type sorption isotherm.

5. Single component gas (methane).

6. Isothermal reservoir condition.

In dual porosity model, fracture and matrix are modeled as two separate grid blocks, thus 

allowing one porosity for fracture and one porosity for matrix in each grid block. The 
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amount of gas stored in the adsorbed phase at any pressure is described by the Langmuir 

isotherm and is in equilibrium with the matrix pressure. Dewatering reduces the pressure in 

the cleat system down to the critical desorption pressure at which gas starts desorbing and 

diffusing in coal matrix. Non-equilibrium sorption model describes the total mass transfer 

rate from coal matrix to cleat network by the product of a diffusion coefficient and a matrix 

shape factor. This product is known as the sorption time which is widely used in coalbed 

methane reservoir simulators (MacLennan et al. 1995). Gas and water relative permeability 

curves are used to explain relative flow of gas and water in the cleat system.

Figure 3 shows the plan and 3D views of the simulation model. The coalbed is confined 

between an overlying high permeable formation and an impermeable formation at the base. 

Coalbed permeability is set to 217 mD, which puts the reservoir in the category of ultra-high 

permeable coals (Palmer 2010), and this may simulate the condition where coal is situated in 

the fairway of a field. The reservoir is normally pressured and has an initial pressure of 942 

psia at the reservoir depth of 2194 ft. The initial gas content of 430 SCF/ton results in the 

critical desorption pressure of 837 psia. Hence, dewatering is required prior to commencing 

gas production. The overlying formation is saturated with water and is hydraulically 

connected to the coalbed. Hydraulic connectivity can be established through vertical 

permeability of the coalbed and the overlying formation. This simulates the condition where 

the producing coalbed is located in a contact zone and water can freely flow from the 

overlying formation into the producing coalbed. Note that hydraulic connectivity can also 

exist due to vertical fractures or permeable faults extending from coal into surrounding 

formations.

Gas and water relative permeability curves, shown in Fig. 4, are assigned to the coalbed and 

the overlying formation to generate gas and water production data. The wellbore is 

completed and perforated within the coal zone. Hence, fluid flow into the wellbore is only 

restricted into the coal interval. Two operational constraints are defined for the wellbore—a 

maximum surface water rate of 4000 STB/day and the minimum bottom-hole pressure of 

200 psia. Reservoir simulation is performed for about 22 years (equivalent to 8000 days) to 

simulate gas and water flow in the coalbed and the overlying formation. The water storage 

capacity of the overlying formation is adjusted by changing the porosity to create two 

simulation cases. In both cases, the level of hydraulic connectivity (permeability) is the 

same; however, in the first case, a larger volume of water flows to the producing coalbed 

compared to the second case. Permeability enhancement and vertical conductivity effects on 

cross-formational flow are studied in the third and fourth cases, respectively.

Production data analysis

The tank-type model is a popular method to study the depletion of gas and water in a 

bounded CBM well (Seidle 2011). It can be used to construct relative permeability curves 

using field/simulated production data. The five-step workflow, introduced by Clarkson et al. 

(2011), is employed to generate gas and water relative permeability curves. Material balance 

equations (Eqs. 1–3) for coalbeds (King 1993) are used to calculate average reservoir 

pressure and water saturation. In this study, pressure-squared formulation (Eq. 4) is used to 
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calculate gas relative permeability. Water relative permeability is calculated by a pseudo-

steady-state equation (Eq. 5).

(1)

(2)

(3)

(4)

(5)

Discussion and analysis

Four simulation cases are presented to investigate the impact of cross-formational flow on 

production performance of CBM wells. In all cases, the contact zone is extended all over the 

drainage area feeding the coalbed with water during production period. In the first case, the 

water storage capacity of the overlying formation is high (high porosity) allowing substantial 

amount of water flows into the coalbed during production. In the second case, the water 

storage capacity of the overlying formation is reduced (lower porosity) while the rest of the 

parameters are similar to the first case. In the third case, cross-formational flow and 

permeability enhancement occur simultaneously, and hence, the role of permeability 

variation on cross-flow can be studied. In the fourth case, the impact of vertical conductivity 

between coalbed and the overlying formation on cross-flow is studied by adjusting the 

vertical permeability of the overlying formation.

Case 1

Gas and water production data are generated by the reservoir simulator for this case when 

absolute permeability of the coalbed is constant. Figure 5a shows the simulated gas and 

water production history for the well. The production profile is separated into an early 
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production period (single-phase water flow) and two-phase (gas and water) flow period. At 

the early production period, single-phase flow of water is observed (gas production is 

negligible) for about 1 year prior to the two-phase flow of gas and water. The water 

production rate rapidly increases and stabilizes at 4000 STB/day which is the production 

constraint specified in the simulation model. There are two distinctive decline shapes on the 

water production profile, indicating that water is depleted from two different sources—the 

overlying formation and the coal section. Average water saturation within the coal and the 

overlying formation is shown in Fig. 5b. Although considerable volume of water is produced 

from the well, average water saturation in coal is approximately constant for 8 years. This is 

due to water discharge from the overlying formation replacing the produced water from the 

coal section. While average water saturation in coal remains close to 1 for an extended 

period of time, average water saturation in the overlying formation sharply decreases. Cross-

flow of water between the coal and the adjacent formation significantly reduces the 

efficiency of the dewatering operation, and consequently gas production is hindered.

Initially, high water saturation in coalbed results in very low gas relative permeability, and 

consequently, gas production rates are very low. Upon depletion of the overlying formation, 

average water saturation in coal declines (see Fig. 5b). Decline in water saturation in coal 

corresponds to a sharp increase in gas production rate which exceeds 2 MMSCF/day at the 

peak of production and then exponentially declines (see Fig. 5a). Rapid increase in gas 

production may serve as a signature showing that cross-formational flow diminishes.

Desorbed gas partly migrates to the overlying formation and replaces the water. Hence, the 

overlying formation acts as a thief zone accommodating desorbed gas from the coal matrix. 

Figure 6 shows the evolution of gas saturation in the overlying formation for the first 6 years 

of production. Hydraulic connectivity among the coalbed and the overlying formation allows 

fluid flow to occur in both directions. Water flows toward the coal section and desorbed gas 

replaces the produced water, and eventually, the top formation is depleted from the water 

and is saturated with gas. Gas migration to the overlying formation may affect the 

production performance and have environmental implications. In this example, the impact of 

the thief zone on production profile is negligible due to the low pressure and storage 

capacity of the overlying formation. Environmental implications of gas migration to adjacent 

formations are more important because fresh water aquifers may be contaminated if the 

contact zone is extended to nearby aquifers. Hence, it is vital to conduct hydraulic 

connectivity assessment in coalbed methane reservoirs when cross-flow is suspected.

Cleat porosity, calculated by production history matching techniques, is very sensitive to 

water production data. Table 2 shows the cleat porosities either used in or derived from 

matching techniques in various basins worldwide. The cleat porosity derived from matching 

techniques varies from 0.035 up to 6% in the literature. The variability in cleat porosity is 

attributed to the water production data which is used to calculate cleat porosity in matching 

techniques. In our study, simulated water production data include both the volume of the 

water produced from the coalbed and the volume of the water produced from the overlying 

formation. Hence, cleat porosity calculation is highly affected when the volume of the water 

flowing from the overlying formation is not excluded from the production data. Cleat 

porosity of 3.7% is obtained when cumulative water production data are used, which is 18.5 

Salmachi and Karacan Page 7

Environ Earth Sci. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



times higher than the actual cleat porosity of 0.2% used in the simulation model. Cross-

formational flow is responsible for higher than actual cleat porosity obtained by the analysis 

of production data.

The results of this simulation study are in agreement with the study conducted by Palmer et 

al. (2011) on cleat porosity measurement in coals. Production data analysis of CBM wells 

with relatively high water production rates leads to cleat porosities up to 3–5%. An example 

is the north of fairway in the San Juan Basin in the USA, where CBM wells produce water 

over 1000 STB/day. The large volume of water produced from the wells is probably 

extracted from an external source (Palmer et al. 2011).

Relative permeability curve shape greatly varies in CBM reservoirs (Zuber et al. 1987; 

Clarkson et al. 2011; Seidle 2011) and can be influenced by net stress, porosity change, and 

viscous fingering and buoyancy effects (Reznik et al. 1974; Clarkson et al. 2007b; Seidle 

2011; Chen et al. 2013). In this study, relative permeability curves are derived from 

simulated 2-phase flow production data by the workflow presented in Fig. 2. Derived gas 

and water relative permeability curves are compared with input curves in Fig. 5c, and clearly 

the impact of cross-flow can be observed on the derived curves. The discrepancy between 

input and derived relative permeability curves is due to the calculation of wetting phase 

saturation by cumulative water production, which includes volume of produced water from 

both coal and overlying formations. When cross-formational flow is not detected, derived 

relative permeability curves are affected and have irregular shapes. Water relative 

permeability curve is concave downward due to the excessive volume of water produced 

from the overlying formation. Gas relative permeability is initially very low and changes 

slightly, then at the average water saturation of about 40% it rises.

Results indicate that when hydraulic communication between the producing coalbed and the 

adjacent formation is not detected, reservoir variables including cleat porosity and relative 

permeability curves derived from PDA are not reliable. Note that in this case, due to a large 

volume of water flowing from the overlying formation, the signature of cross-flow is readily 

identified on reservoir variables including cleat porosity and relative permeability curves. 

The degree of influence of cross-flow on derived reservoir parameters depends on the 

volume of water flowing from the external source. The cross-flow effect on the production 

profile is lessened when a low volume of water is discharged from the adjacent formation 

into the coal section. Low-intensity cross-flow and its associated effects on production 

performance and production data analysis are discussed in the next example.

Case 2

In this example, the porosity of the overlying formation is reduced from 9.16% (in the first 

case) down to 2% and, as a result, the water storage capacity of the overlying formation is 

reduced. This decreases the contribution of the overlying formation to total water 

production, and consequently the impact of cross-formational flow is alleviated. Gas and 

water production data for this case are presented in Fig. 7a.

The shape of the water production profile resembles production data of a bounded well 

drilled in an under-saturated CBM reservoir. Hence, the signature of cross-flow on the water 
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production profile is not evident. Water saturation within the coalbed reduces more quickly 

compared to the first case (see Fig. 7b), and as a result, gas mobility increases. Time of peak 

gas production is brought forward, and gas production rate reaches to 3.6 MMSCF/day at the 

peak of production. Cumulative gas production of 10.76 BCF results in total gas recovery of 

41.8%. This is higher than gas recovery factor of 29.6% calculated for the first case. Higher 

recovery factor is attained because gas saturation and relative permeability evolve more 

quickly.

When cross-formational flow is ignored, cleat porosity of 0.87% is calculated by the 

analysis of cumulative water production data. Note that cleat porosity of 0.87% which is 4 

times higher than actual porosity used in the simulation maybe incorrectly considered as an 

acceptable value for reservoir engineering purposes. Although cross-formational flow exists, 

its effect on cleat porosity is likely to be unnoticed due to lower volume of water flowing 

from the external source. Gas and water relative permeability curves derived from 

production data are shown in Fig. 7c and are compared with the input curves. The effect of 

cross-flow on derived relative permeability curves is moderated when compared with the 

first case in which significant volume of water is produced from the external source. Cross-

flow imposes two important features on relative permeability curves shown in Fig. 7c. First, 

the water relative permeability curve is close to a straight line. Second, critical gas saturation 

is high for the gas relative permeability curve. Note that these features are related to cross-

flow effect and do not represent fluid flow characteristics of the coal formation.

The shapes of relative permeability curves in Fig. 7c are similar to some of the coal relative 

permeability curves investigated in the literature (Purl et al. 1991; Shi and Durucan 2004; 

Clarkson et al. 2011; Chen et al. 2013). Hence, the signature of cross-flow on derived 

relative permeability curves may be ignored due to this similarity. It is important to 

investigate the groundwater hydrology of the area when derived relative permeability curve 

shapes are similar to those demonstrated in this study.

Case 3

In this example, cross-formational flow and permeability enhancement are simultaneously 

occurred. Reservoir properties are similar to those used in the first case except for coal 

permeability which is pressure and desorption-dependent. Palmer–Mansoori model is used 

to incorporate the effect of compaction and matrix shrinkage into coal permeability, and the 

parameters used in the permeability model are listed in Table 3.

Figure 8a compares gas and water production history of this example in which coal 

permeability is dynamic and sensitive to pore pressure and matrix shrinkage with the first 

case when coal permeability is constant. Due to strong shrinkage, coal permeability starts to 

rise shortly after production commences, and hence, water depletion is facilitated and water 

is produced at a constant rate of 4000 STB/day for approximately 3 years before it starts to 

decline. Initially, water production profile is concave downward indicating the impact of 

permeability increase on water production rates. Average water saturation in the overlying 

formation, shown in Fig. 8b, declines more rapidly compared to the first case, indicating that 

permeability enhancement facilitates water depletion in both overlying and coal formations. 

Figure 8c shows horizontal coal permeability variation with time which is due to 
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simultaneous actions of two opposing factors on coal permeability—matrix shrinkage and 

cleat compaction. Note that coal permeability increases in both horizontal and vertical 

directions and thus hydraulic connectivity with the overlying formation is improved during 

production.

Both peak of gas production and time to reach to peak of production are affected by 

permeability enhancement. Peak of gas production is about 4 MMSCF/day which is double 

that of the first case, and time to reach to peak of gas production is brought forward to 3200 

days. Permeability enhancement facilitates gas and water production from coalbed and the 

overlying formation which are opposing factors in economics of CBM wells.

Case 4

Vertical conductivity between producing coalbed and overlying aquifers can be promoted by 

existence of major faults, complex fault systems, or coal fractures extending into nearby 

formations. The existence of complex fault system and major fractures extending from 

coalbed into overburden layers may be identified by borehole image logs (Reynolds et al. 

2003; Rajabi et al. 2016a, b). This case demonstrates how vertical conductivity established 

between coalbed and the overlying formation affects production profile. Vertical 

permeability of the overlying formation is set to 1 mD in the simulation model to establish a 

lower level of connectivity between coalbed and the overlying formation compared to the 

first case. In this case, cross-formational flow is restricted by vertical permeability of the 

overlying formation (1 mD) which is lower than vertical permeability of the coalbed (21.7 

mD). Figure 9 compares production profile and water saturation change in coal and 

overlying formations of this case with the ones in the first case.

Due to restricted cross-formational flow, imposed by vertical permeability of the overlying 

formation, water flows from the overlying formation into coalbed at lower rates compared to 

the first case. Water continuously leaks to the coal over the life of the well, and hence, water 

saturation in coal remains high. After about 5000 days, water saturation starts to stabilize at 

about 60% and rebounds very slightly afterward (see Fig. 9). Water saturation stabilization 

in coal at 60% is because of water rate into coalbed becomes equal to water production rate. 

Later, water rate from the overlying formation slightly exceeds the water production rate, 

and hence, water saturation rebounds very slightly. When relative permeability curves are 

derived from production data (see Fig. 10), signature of cross-formational flow can be 

observed on the curves. Water saturation stabilization/rebound in coal results in derived 

relative permeability curve shapes to be approximately flat when calculated water saturation 

is between 0.2 and 0.1. Note that the calculated water saturation is based on the assumption 

that cross-flow does not exist; hence, it is different from actual water saturation shown in 

Fig. 9 for coal and the overlying formation.

Conclusion

Simulation results indicate that CBM wells located in a contact zone produce large volumes 

of water, and production rate depends on the level of connectivity established between the 

producing coalbed and nearby formations. Cross-flow of water tends to keep water 

saturation high within the coalbed for a period of time, and consequently the peak of gas 
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production is postponed. Once the adjacent formation, which is hydraulically connected to 

the coalbed, is sufficiently depleted from water, water saturation in coal declines. The 

decline in coal water saturation corresponds to rapid increase in gas production. This quick 

increase in gas production is a feature in the production profile that might be served as a 

signature, indicating that cross-formational flow diminishes.

Cross-formational flow of water from an external source into the producing coalbed affects 

calculations performed by production data and also interpretations related to reservoir 

parameters and dynamics. When cross-formational flow is not detected, cleat porosity 

calculated by cumulative water production data is higher than actual cleat porosity. Gas and 

water relative permeability curves constructed by simulated production data are also 

different than the initial relative permeability curves and have distinctive features. Water 

relative permeability is high, and the curve could be even concave downward. Higher than 

expected, water relative permeability is due to the excess water flowing from the external 

source into the producing coal. Gas relative permeability is very low for a range of water 

saturation and then sharply rises. Although relative permeability curves are often used as 

history matching parameters, the assumption that the entire flow being from the coalbed may 

still lead to erroneous relative permeability curves, even after history matching. Therefore, 

hydraulic connectivity assessment should be performed to confirm the hydraulic 

communication and its intensity within the area using well logs or zone isolation tests, when 

the cross-flow is suspected. This helps to mitigate environmental problems associated with 

cross-flow effects and maximizes production efficiency for future field development plans.
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List of symbols

A Area (acres)

a Ash content (fraction)

Bw Water formation volume factor (rb/stb)

Gi Initial gas in place (scf)

Gp Cumulative gas production (scf)

h Coal thickness (ft)

Kabs Absolute permeability (mD)

Krg Gas relative permeability

Krw Water relative permeability

m Moisture content (fraction)
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pi Initial pressure (psia)

pL Langmuir pressure (psia)

Pwf Flowing bottom-hole pressure (psia)

PR Reservoir pressure (psia)

qg Gas flowrate (mscf/day)

qw Water flowrate (STB/day)

re External radius (ft)

rw Wellbore radius (ft)

s Skin factor

Sw Water saturation

Swi Initial water saturation

T Temperature (Rankin°)

Tsc Temperature at standard condition (Rankin°)

VLdaf Langmuir volume (dry-ash free, scf/ton)

Wp Cumulative water production (STB)

Z Gas compressibility factor

μg Gas viscosity (cP)

μw Water viscosity (cP)

Ø Porosity (fraction)

ρB Bulk coal density (g/cm3)
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Fig. 1. 
Conceptual model illustrating cross-formational flow due to geological factors including 

permeable faults and contact zone near to producing CBM wells. The figure also shows that 

cross-flow can be established artificially by propagation of hydraulic fractures into adjacent 

formations
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Fig. 2. 
Generalized workflow to derive relative permeability curves and cleat porosity from 

simulated production data in this study. Comparison of derived parameters from simulated 

production data with input parameters helps to assess the effect of cross-formational flow on 

PDA
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Fig. 3. 
Reservoir simulation model constructed by CMG reservoir simulator. This single-well 

model is used to investigate the effect of water flow from the overlying formation into the 

coal section on production performance of the well
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Fig. 4. 
Input relative permeability curves for coalbed and the overlying formation (Gash 1991)
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Fig. 5. 
Simulation results demonstrated for case 1: a gas and water production profiles generated by 

reservoir simulation, b average water saturation in coalbed remains close to 1 for an 

extended period of time while water saturation drops in the overlying formation, c derived 

gas and water relative permeability curves from production data when cross-formational 

flow is overlooked. Derived curves are compared with the input curves
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Fig. 6. 
Evolution of gas saturation in the overlying formation. During production, desorbed gas 

from the coal layer migrates upward to the top formation and gas saturation increases
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Fig. 7. 
a Production history for the second case. b Comparison of water saturation in coal for case 1 

and case 2. c Comparison of input relative permeability curves with the ones derived from 

production data
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Fig. 8. 
Simulation results for case 3, a comparison of gas and water production rates for case 3 with 

the first case in which permeability is constant during production. When permeability 

increases, time of peak gas production is brought forward and peak gas rate is almost double 

b average water saturation in coalbed and overlying formation c permeability varies during 

production and is calculated by the Palmer–Mansoori model
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Fig. 9. 
Sensitivity of gas and water production profiles to vertical conductivity between the 

overlying formation and the coalbed, a gas and water production history when vertical 

permeability in the overlying formation is 100 mD (case 1), b production history when 

vertical permeability of the overlying formation is set to 1 mD
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Fig. 10. 
Gas and water relative permeability curves, derived from production data for case 4, are 

compared with input curves used in the simulation model. Water saturation stabilization/ 

rebound in coal at late time results in relative permeability curves to have approximately flat 

shapes when water saturation changes from 0.2 to 0.1 (see the dashed box)
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Table 1

Reservoir parameters used as inputs in the reservoir simulation model

Properties Value

Thickness of the overlying formation (ft) 11.15

Porosity of the overlying formation (%) 9.16 and 2

Vertical permeability of the overlying formation (mD) 100

Coal thickness (ft) 31

Coalbed depth (ft) 2194

Horizontal permeability in coal (mD) 217

Vertical permeability in coal (mD) 21.7

Drainage area (acres) 1090

Coal specific gravity 1.435

Cleat porosity (%) 0.2

Langmuir volume (SCF/ton) 664

Langmuir pressure (psia) 438

Initial reservoir pressure (psia) 942

Critical desorption pressure (psia) 837

Wellbore radius (ft) 0.65

Well skin factor 0
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Table 2

Cleat porosities used in production history matching techniques in various basins worldwide

Author and Year Study area Cleat porosity used in matching techniques (%)

McKee and Bumb (1987) San Juan Basin, USA 4

Zuber et al. (1987) Black Warrior Basin, USA 2

Sawyer et al. (1990) Black Warrior Basin, USA 3

Young et al. (1991) Cedar Hill Field, Northern San Juan Basin, USA 0.25–0.8

Ried et al. (1992) Powder River Basin, USA 4

Shi and Durucan (2004) San Juan Basin, USA 0.2

Aminian et al. (2004) Appalachian Basin, USA 2–3.5

Wong et al. (2007) South Qinshui Basin, China 0.8

Clarkson et al. (2007) Horse shoe canyon, Canada 0.1

Shi and Durucan (2010) San Juan Basin, USA 0.035–0.11

Moore et al. (2011) San Juan basin, USA 0.055–0.17

Clarkson et al. (2011) San Juan Basin, USA 0.16

Karacan (2013) Black Warrior Basin, USA 0.27–5.65

Mazumder et al. (2013) Surat Basin, Australia 0.6–2

Karacan et al. (2014) Illinois Basin, USA 1–6

Yarmohammadtooski et al. (2016) Bowen Basin, Australia 5
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Table 3

Parameters used in the Palmer–Mansoori model

Parameter Value

Poisson ratio 0.39

Young modulus of elasticity (psia) 445,000

Strain at infinite pressure 0.01266

Langmuir pressure (psia) 438

Palmer–Mansoori exponent 3

Cleat compressibility (psia−1) 0.000146

Cleat porosity (%) 0.2
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